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Abstract 
 

Belief-Desire-Intention (BDI) is a powerful agent 
paradigm that allows for the development of so-called 
intelligent agents – agents that can reason and act 
based on their beliefs and intentions. However, this 
power often comes at the cost of increased 
computational overhead. We describe our experience 
using a BDI agent framework for developing a 
simulation of collaborative air traffic flow 
management and the efficiency problems we 
encountered. By using BDI more judiciously in our 
simulation, we were able to address these issues and 
greatly reduce the execution time of our simulation. 
From our successes and failures, we derive several 
guidelines that may enable other researchers to avoid 
similar efficiency issues in BDI-based simulations. 

 
Keywords: Belief-Desire-Intent, efficiency, air traffic 
control 

1.Introduction 

The National Airspace System (NAS) of the United 
States today is under the control of the Federal 
Aviation Administration (FAA). Aided by their more 
comprehensive situational knowledge, the FAA’s air 
traffic controllers work with pilots to ensure safety in 
the airspace. Though pilots of small general aviation 
(GA) aircraft are often able to fly safely using visual 
flight rules (VFR) and minimal controller direction, 
pilots of larger commercial aircraft rely heavily on air 
traffic controllers, as they have little visual warning at 
the correspondingly higher flight speeds. Air traffic 
flow management, then, is primarily focused on 
managing these commercial flights safely through 

traffic congestion, poor weather and other potential 
hazards. 

To make this task manageable for the controllers, 
commercial aircraft generally follow structured air 
traffic routes, essentially “highways in the sky”. These 
air routes greatly increase the predictability and 
manageability of traffic flows, but at the cost of 
freedom of movement. Though not readily observable 
to the naked eye, aircraft are often queued up in these 
flight routes, much like cars on a busy freeway. Unlike 
those cars, however, aircraft must operate within a 
narrow range of flights speeds to avoid stalling or 
structural damage. These operating constraints make 
the traffic flow management task more challenging, 
reducing the number aircraft the controllers can 
manage. A forecast of air traffic demand in 2025 
shows an increase of two to three times over present 
day levels [1], resulting in even greater flight delays. 

The Next Generation Air Transportation System 
(NGATS) project is a multi-faceted research effort to 
address issues with the NAS. One such facet is the area 
of Collaborative Traffic Flow Management (CTFM), 
which intends to increase both the efficiency of the 
NAS and the satisfaction level of the airlines. In 
today’s system, the flow of traffic is primarily handled 
by three entities: the FAA’s Air Traffic Control System 
Command Center (ATCSCC) and, Traffic 
Management Units (TMUs), and the individual 
airlines' Airline Operation Centers (AOCs). Previous 
field observations found that several aspects of the 
current system hindered collaboration [2]. A new 
concept of operations was suggested to address these 
issues [3], and our goal is to evaluate this concept 
through an agent-based simulation. 

We begin (in Section 2) with related TFM 
simulations, categorizing them within or outside of the 
agent-directed simulation taxonomy. In Section 3 we 



state the problem we are trying to model and simulate 
(i.e. a specific traffic flow problem in the NAS), and in 
Section 4 we motivate our use of the BDI agent 
paradigm and characterize the simulation platform 
(Brahms) used. The primary contribution follows in the 
remainder of the paper, as we describe an idealized, 
naïve model design that incorporates earlier flaws, and 
contrast this naïve design with our later design. From 
this experience, we derive general guidelines for the 
use of BDI agents in large-scale simulations and 
conclude with future work. 

2.Related TFM Simulations 

TFM involves both complex physical processes 
(e.g., aerodynamics) and complex human systems (e.g., 
coordinated action and distributed decision making). 
An earlier focus on physics-based modeling has lead to 
several excellent simulators of the first type, and so 
increasingly the focus has been shifting to the 
simulating the roles of people in the TFM system. The 
use of the agent paradigm is growing in TFM 
simulations, but the use of BDI agents in TFM has yet 
to enjoy widespread adoption. 

Agent-directed simulation separates the use of 
agents in simulation into the category of simulation for 
agents and agents for simulation [4]. In simulation for 
agents, simulation techniques are used for simulating 
real-world entity behavior, e.g. simulation of cognitive 
behavior. Agents for simulation itself is divided into 
two categories: agent-supported simulation, the 
implementation of a simulation environment with the 
help of agent technology; and agent-based modeling 
and simulation (ABMS), using interacting software 
agents modeled to generate emergent system behavior. 

Simulation for Agents of TFM: The Airspace 
Concept Evaluation System (ACES) [5] is a distributed 
agent simulation of the NAS. ACES is based on the 
Department of Defense’s High Level Architecture 
(HLA), which has enabled the integration of several 
simulations into the overall system. As ACES is 
focused on the entire NAS, the simulation includes 
traffic flow management [6], but is not specifically 
focused on TFM.  

The Man-Machine Integrated Design and Analysis 
System (MIDAS) [7] is another example of an agent 
simulation. MIDAS is a human performance simulator 
for pilots or flight controllers, focusing on the 
limitations of cognitive ability more than the results of 
complex decision making. 

Agents for Simulation of TFM: IMPACT 
(Intelligent agent-based Model for Policy Analysis and 
of Collaborative Traffic flow management) uses an 
ABMS approach to simulate the interaction between 
simple agents in an economically based environment 

[8]. In the simulation, policy-based FAA agents 
evaluate and impose ground delay programs (GDP), 
based on the capacity of the airspace and the weather. 
Their decisions are based on simple rules about 
capacity of airports and equality between airlines. The 
airline agents are economically based agents and make 
their decisions based on calculated cost. By imposing 
specific random events at the start, the output of the 
simulation are statistics based on the emergent agent 
behavior in the system. The purpose of the IMPACT 
simulation is very similar as the purpose of our 
simulation. However, our agent approach differs in that 
IMPACT models airlines and FAA as swarm-based 
agents that use a simplistic decision-making algorithm. 
In contrast, we use a more complex agent model of the 
organization of both airlines and FAA, using BDI 
agents that can reason and communicate with other 
agents in the model.  

Tumer and Agogino [9] use FACET (see below) to 
test a multi-agent algorithm for traffic flow 
management. They use a Monte-Carlo simulation to 
estimate the congestion within a certain traffic 
management unit (TMU) within the NAS, based on 
simple agents’ actions to speed up or slow down 
traffic. The agents use reinforcement learning to set the 
separation between airplanes to manage congestion.  

Whereas our simulation focuses on the collaborative 
decision-making process between the airlines and FAA 
before flights take off, Tumer and Agogino focus on 
adaptive agents taking independent actions that 
maximize a system evaluation function for enroute 
flights. They use an ABMS approach to evaluate their 
AI-algorithm. Again, agents are very simple 
computational objects representing fixes in a 2D space, 
and do not have any similarities with entities in the real 
world (e.g. particular people in a FAA control center). 

Non-Agent Simulations of TFM: Hogan and Wojcik 
[10] simulate a “day in the life” of Newark airport. 
Their simulation model is not agent-based: although 
their paper does not provide a description of the model 
representation, it is clear that airport, runways, routes, 
etc, are at most represented as structured records or 
objects. Decision-makers are not modeled in any detail. 

FACET [11] [12] is a NASA-developed tool for 
simulating air traffic flow. FACET contains modules 
that concentrate on trajectory modeling, weather 
modeling, and also contains a model of the airspace 
structure, including the ARTCC regions, sectors, and 
air routes. FACET can act either as a simulator or as a 
playback mechanism, using either from historical data 
or from a live data feed from the FAA. FACET has 
been integrated into a commercial product, Flight 
Explorer [13] which is used by the majority of major 
U.S. airlines. FACET is not an agent-based simulation, 
concentrating primarily on the physical aspects of air 



traffic flow, but does include non-physical aspects such 
as controller workload and air traffic management 
initiatives. 

3.Simulating CTFM  

The CTFM concept of operations is quite complex, 
requiring a multi-year effort to develop a complete 
simulation. Our initial efforts focused only on a subset 
of the CTFM concept of operations: the route selection 
problem [14]. We also made several simplifications to 
speed up the initial modeling task. In reality, each 
controller controls a three-dimensional space known as 
a sector, but in our model we assigned one controller 
per route and did not include sectors. The controllers 
themselves were modeled only as a constraint, i.e., the 
number of flights that could follow a particular air 
route, which we considered as a route capacity. The 
designs presented in this paper do not include persons 
or roles within an organization, as our BDI agents 
correspond to the organizational level. Therefore, an 
AOC or TMU is modeled as a single agent rather than 
a more complex set of cooperating “people” agents. A 
more complex model that captures individual roles is 
currently under development but falls outside of the 
scope of this paper. 

We created several simple traffic scenarios with 
varying levels of traffic. All scenarios used traffic 
between seven airports, three airlines, and controlled 
by only one TMU. This meant that we had only one 
TMU agent and three AOC agents, and that we did not 
need to model TMU to TMU interactions. Three air 
routes were created between each airport pair: a 
primary route, preferred by all airlines, and two less 
desirable secondary routes. Though the capacity on the 
primary route was not always enough for all scheduled 
traffic, there was enough capacity amongst the three 
routes to accommodate all scheduled traffic. Our goal 
was to measure how effectively routes were assigned 
to flights by either the TMU or the AOC. 

We created several variants of the simulation to 
provide points for comparison. In the first variant, the 
TMU chose all routes for all flights without input from 
the AOC or concern for the relative value of each 
flight: this simulation roughly corresponds to current 
operations. In the second variant, the TMU again chose 
routes for all flights, but would use the value of the 
flight and a greedy algorithm to reach a globally 
optimal solution. In the third variant, the AOCs would 
choose routes themselves in an iterative process, with 
the TMU evaluating the global solution and notifying 
the AOCs of any constraint violations. This variant 
most closely corresponded to the CTFM concept of 
operations. In all cases, we ignored the possibility of 

weather and other such disruptions; the only constraint 
was the limited (but static) capacity of the routes. 
 
 

4.The Case for BDI 

Our notion of modeling collaboration between 
human organizations is based on our work practice 
simulation approach [15]. Although modeling work 
practice based on a concept of future collaboration 
between people is not possible (as the work practice 
has not been established), the agent-based modeling 
approach we developed for modeling work practice in 
organizations allows us to instantiate the concept 
process flow in a realistic agent-based model. Such an 
ABM enables the investigation of how people will 
actually collaborate in the future process. 

The main representational paradigm for BDI agents 
is declarative antecedent-consequence rules, similar to 
the old rule-based expert systems [16] [17]. Each BDI 
agent can be seen as a knowledge-based system that 
represents the reasoning capability of a particular 
agent. Therefore, a multi-agent BDI simulation 
includes a number of parallel-executed knowledge-
based agents that represent people performing 
particular roles in organizations. We use BDI agents to 
model the collaborative decision making in each phase 
of the process flow. This allows us to model the 
collaborative decision making at a realistic level of 
people working together in an organization. This is in 
contrast to the simple algorithmic agents used in [8], 
[9] and [10].  

The power of the BDI approach is that we can 
represent how collaborative decision making can 
happen in tomorrow’s organizations of airlines and 
FAA. We represent the work activities of the different 
roles needed to implement the CTFM concept process.  

We use the Brahms multi-agent simulation language 
[18] to model the concept collaborative process flow 
described by Garcia-Chico et al [19]. Brahms is a tool 
for modeling and simulating the way people work and 
collaborate, and use systems to accomplish their tasks. 
Brahms agents are both BDI agents, as well as 
subsumption-based reactive agents (see Figure 1) [20]. 
Brahms can be used to describe current and future 
work processes and practices in human and other types 
of organizations. Another application of Brahms is to 
design the collaborative activities between multiple 
intelligent agents— both human and software agents 
[21]. 



 
Figure 1. Brahms Agent Architecture 

Figure 1 shows the architecture of a Brahms agent. 
Each Brahms agent runs as a separate Java thread 
within the discrete-event Brahms Virtual Machine. A 
Brahms agent has a belief-driven inference engine that 
continuously monitors the changes and/or creation of 
beliefs that occur in the agent’s declarative memory. 
Every belief change triggers an evaluation of possible 
frame activations in the agent’s procedural memory. 
The procedural memory consists of two types of 
frames (i.e. rules): workframes and thoughtframes. 
Thoughtframes are forward-chaining production rules 
that take no simulated time to fire. Workframes, on the 
other hand, are forward-chaining rules that call 
activities that take simulated time. 

With every discrete-event change in the agent’s 
declarative memory, a number of workframes and/or 
thoughtframes have the potential of firing. These 
become part of the workframe- and thoughtframe 
stacks. The thoughtframe stack uses a simple thought 
frame priority schema to select the current 
thoughtframes to fire in the current clock tick. In 
contrast, the workframe stack has a complex conflict 
resolution schema that selects the agent’s current 
activity, using a workframe and activity state-transition 
model. 

Finally, Brahms allows for modeling the 
environment and its state as facts in the World Facts 
Model (WFM). Through a reactive method, agents can 
detect facts in the world state, modeling an agent’s 

perception. Detected facts become beliefs added to the 
agent’s declarative memory. However, fact detection is 
activity-context specific so that not every fact is 
detected by the agent. Agents, through the execution of 
actions in the world can also change the state of the 
world by creating or changing facts in the WFM. A 
more complete explanation of how Brahms works can 
be in found in [15]. 

5.Naïve Design 

 

Figure 2. Naïve Simulation Design. All simulation 
components are implemented in the Brahms language. 
Blue ovals represent agents, with stacks abstractly 
representing the relative number of instantiations. Blue 
3-D boxes represent significant reasoning modules. 
Green dashed ovals represent complex state 
representation. 

In our naïve simulation design, we implemented all 
the simulation components directly in the Brahms 
language (see Figure 2). Along with several minor 
agents, the simulation had four main agent types:  

 
1. Pilot Agents. As the simulation began, each pilot 

agent would report for duty with their 
corresponding AOC and transmit flight schedule 
information (e.g., scheduled takeoff time, 
destination and arrival times) to the AOC. They 
would receive flight route assignments from the 
AOC when such were available, and fly the 
aircraft along this route at the scheduled time.  

2. Flight Agents. Though not deliberative agents, 
flight agents were created and given several 
bookkeeping tasks, like reporting position and 
calculating flight value information to the AOC.  

3. TMU Agent. The TMU agent served as the 
monitor of the airspace, detecting demand-
capacity imbalances and broadcasting such 
information to the AOCs. In the primary variation 
of the simulation, the TMU would accept or reject 
flight route requests from the AOC; in the other 



simulation variations, the TMU agent would 
assign routes instead of the AOCs, using either an 
optimal or suboptimal strategy. 

4. AOC Agents. The AOC agents are the airlines’ 
interface to the FAA and communicate 
information such as flights, schedules, and flight 
value information, as well as receive any 
transmitted information from the TMU. In the 
primary simulation variant, the AOCs would select 
routes for their flights, re-planning whenever those 
route selections were rejected by the TMU; in the 
other variants the AOCs had no direct role in route 
selection. In an earlier version of the simulation, 
the AOCs also created the flight routes 
themselves, using a heuristic search to combine 
path segments into a reasonable route to the 
desired destination. 

 
In addition to these agents, we also represented 

aspects of the environment (i.e. the airspace) as facts in 
Brahms, necessarily, so that the agents can detect facts 
in the environment and reason about them. Therefore, 
physical quantities such as waypoint position and route 
lengths were directly represented in the Brahms 
simulation, along with incorporeal properties like 
controller workload and impacted areas. 

Unfortunately, it was quickly apparent that the 
naïve design would not yield a usable implementation. 
Though there was no explicit run time performance 
requirement, an excessively slow simulation would 
lead to difficulties with debugging and further 
development. Even with only a partial implementation, 
simulation runs were taking tens of minutes, which 
was a real concern given the relatively low level of 
complexity achieved. 
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Figure 3. Flight Value Computation Efficiency. 
Using distributed agents to calculate flight value 
resulted in an exponential increase in computational 
time as the number of flights increased. The same 

operation, calculated centrally, had superior 
performance characteristics. 
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Figure 4. Simulation Redesign. By simplifying, 
removing or redistributing simulation components, we 
were able to reduce the run time of the simulation to 
acceptable levels. 

6.Revised Design 

We re-evaluated our design choices in order to address 
the efficiency problems we encountered. In this 
redesign, we considered two issues: what we had 
chosen to simulate, and how those components could 
be simulated. 

6.1. Simulation Simplifications 

Our focus in the initial simulation was to study the 
route selection problem in collaborative and 
authoritarian settings. Upon further reflection, it was 
clear that the essential component was really the 
advanced planning, and not the execution of the plan 
itself. Correspondingly, we sought to simplify the 
model by excluding portions that had real world 
counterparts, but were not pertinent to our current 
focus. 

We removed the Brahms pilot agents, as they did 
not play an integral role in the planning phase, and 
changed the flight agents to passive flight objects. The 
bookkeeping and flight value computations were 
moved from the flight to the TMU, partially for 
efficiency concerns (see Figure 3) but also to avoid the 
situation where an AOC might artificially inflate flight 
values to get better treatment. Had we decided to 
preserve the execution phase, we still could have 
eliminated our pilot agents, as they robotically 



followed the commands of the AOC and were not 
enriched by the BDI representation of Brahms. 

Similarly, the route creation fell outside of the 
planning phase, as a prior process that creates routes as 
inputs to planning. Instead of creating routes on the fly, 
we structured fixed routes before the simulation 
started. This meant that we only had to create the 
routes once, rather than every time we ran the 
simulation. 

6.2. Implementation Choices 

The remaining components were vital to the 
simulation and could not be eliminated. However, not 
all components were justified in their use of a BDI 
model. We had implemented a greedy algorithm to 
create a globally optimal selection of routes for flights 
across all airlines. The algorithm had not been 
designed to model the actual process a human would 
follow to reach this globally optimal solution; it was 
merely created to serve as a point of comparison. As 
such, it was not necessary or even logical to implement 
this function in a BDI framework; only the resulting 
solution was needed. Therefore, we used Brahms 
capability to interface with Java1 to implement the 
algorithm. 

The other major implementation change was to rely 
on the simulation capabilities of FACET (see Section 
2) for many of the simulated components. Through the 
use of Brahms Java agents and the FACET Java API, 
we were able to utilize the optimized simulation 
capabilities of FACET for the airspace environment 
model instead of our own implementation. However, 
the agents in our simulation do reason over aspects of 
the airspace; this required a representation of the 
salient features in the BDI framework. Great care was 
taken to only represent the airspace components that 
were truly needed for agent decision making, and such 
components were represented in the most abstract (i.e., 
compact) form possible. In some cases, such as the 
identification of the demand-capacity imbalance, the 
processing was done in FACET (and supporting Java 
code) and only the outcomes were represented in the 
corresponding agent’s belief model. 

As our naïve design was never fully implemented, a 
complete head-to-head comparison was not possible; 
nonetheless with significant speedup of bottlenecks 
and elimination of some computation entirely, our 
implementation of the redesign should have been at 

                                                             
1 There are two ways to interface with Java in Brahms. Both make 

use of the extensive Java API: 1) Java activities are agent actions 
implemented in Java, 2) Java agents are “agentified” Java objects 
implemented completely in Java that other Brahms agents can 
communicate beliefs with. Brahms Java agents do not have an 
inference engine as shown in Figure 1. 

least several times faster than a completed 
implementation of the naïve design. In addition, our 
revised implementation included components that our 
initial implementation lacked, but also did so at a 
higher level of fidelity, due to our use of FACET. 

7.Discussion 

The inefficiencies of our initial design where 
primarily caused by our overuse of the BDI paradigm 
in the simulation. The choice to model both pilots and 
flights as agents meant that there would be hundreds of 
such agents, far more than all other agents in the 
simulation combined. In Brahms, like many other BDI-
based agent languages, each agent corresponds to a 
separate processing thread [22]. Each agent must 
continuously monitor and process events that trigger a 
reaction (e.g., detection of a relevant facts in the world 
state or communication of beliefs by other agents), 
slowing the process considerably (also noted 
incidentally in [23]) 

Pilots and flight agents were not essential to our 
simulation goals and were somewhat easily eliminated, 
but other elements were vital (such as a model of the 
airspace and optimization routines). However, we 
realized that we had resorted to using the BDI 
paradigm as if it were an imperative programming 
language. Outside of programming convenience, we 
could not justify the use of the BDI paradigm to 
develop models for “non-thinking” entities such as the 
airspace and airplanes [24]. Also, it made little sense to 
model complex decision making with the BDI 
framework when we were neither interested nor 
informed of the actual steps of the process.  

In our experience, the most effective approach for 
most simulation is thus to combine BDI agents and 
non-BDI components to satisfy simulation 
requirements. We suggest the following guidelines to 
address efficiency issues, in our order of decreasing 
preference: 

 
1. Use BDI for explicit cognitive processes. The 

BDI paradigm is an excellent choice when 
modeling well-understood decision making. On 
the other hand, other simulation techniques are 
better suited for modeling physical and likewise 
processes that are not analogous to the reasoning 
supported by BDI. Also, decision-making 
processes whose details are not understood are not 
well served by a full BDI implementation, as we 
observed in our optimized route selection process. 
In such cases an algorithmic approach, as opposed 
to a model-based symbolic approach is often more 
efficient. 



2. Scope the simulation carefully. Including 
elements in the simulation that do not support 
simulation goals can adversely affect the 
simulation. When building a simulation, there is a 
natural tendency to include whatever entities are 
involved in the real world, so care must be taken 
when choosing what to model. In addition, the 
level of granularity for modeling processes is 
important; there is no need to model the details of 
a decision-making process when you are only 
concerned with the outcome, rather than the 
process itself. Careful scoping is a general 
principle independent of efficiency. However, it is 
especially important to reconsider functionality 
that is causing serious performance problems. 

3. Consider the execution properties of the 
language. Every BDI implementation eventually 
turns into code executing on a computer, and 
understanding the algorithmic properties is 
sometimes necessary. In Brahms, we found that a 
straightforward expression of multiple 
preconditions can lead to a combinatorial 
explosion in execution time; by considering how 
the underlying simulation engine executed it, we 
were able to create a logically equivalent form 
with vastly superior performance. Similarly, as 
performance degrades with the number of agents 
introduced, it is sometimes beneficial to combine 
processes from multiple agents into a single agent 
(see Figure 3). However, since these techniques 
generally decrease readability and correspondence 
with the real world, we recommend using them 
only as a last resort. 

8. Future Work 

Efficiency is likely to remain a concern as we 
expand the simulation to more accurately reflect the 
proposed CTFM concept. Consider the fact that to 
simulate the entire NAS the simulation needs to deal 
with more than 50,000 flights per day, 26 TMUs 
organizations and tens of AOCs. We believe that the 
guidelines presented in this paper will help us avoid 
many of the potential efficiency problems we might 
otherwise encounter. Specifically, we plan to expand 
our simulation in several ways: 
1. Expand simulation scope. Our initial simulation 

efforts focused entirely on the TFM planning 
phase, but the complete CTFM concept covers 
several phases that influence each other. As we 
shift to this multiphase model, the dynamism in 
the airspace environment will play a vital role. 
Fortunately, by integrating FACET into our 
simulation, we will be able to make use of a 
highly optimized airspace simulator. Our design 

challenge changes from creating an airspace 
simulator to deciding how to efficiently transmit 
information between the two simulations. Most 
likely, careful scoping will be necessary. 

2. Increase decision making fidelity. Initially, we 
have only modeled simple decision-making 
processes in our simulation. In reality, the 
decision-making processes followed by the 
corresponding real life entities are neither simple, 
well understood nor publicly available. Accurate 
modeling of decision making is necessary for 
overall simulation fidelity and remains a 
challenge. One possibility is to use historical data 
and learning techniques to induce a model. In any 
case, since we are neither likely to learn the 
detailed steps of such decision making, nor are we 
interested in validating that process, we will 
model such processes at a large-grained level 
without using BDI internally to arrive at the 
resulting decision. 

3. Increase simulation size. TFM issues range from 
those local to a sector or airport to ones that are 
truly national in scope. Even at the local level a 
major airport will have hundreds of flights from 
tens of different carriers. To date, our simulations 
have included only a handful of agents (as 
measured in our redesign), but we must scale up to 
a much larger number to simulate other types of 
TFM issues. There is a “breaking point” in every 
simulation were it is no longer feasible to increase 
the size of the simulation. This point may come 
earlier in BDI systems that use a sophisticated 
level of processing for each agent. One possibility, 
supported by Brahms, is to distribute the 
simulation amongst several computers, though this 
introduces new issues of complexity and limited 
hardware. In the end, though, it may not be 
feasible to create a full-sized simulation of CTFM 
involving thousands of BDI agents using existing 
simulation packages such as Brahms. 

4. Modeling of Organizations. We will increase the 
fidelity of the simulation of the human decision 
making by modeling the roles and role interaction 
in the different organizations, both for TMUs and 
AOCs. 

5. Systematic Performance Investigation. A 
thorough empirical study of the performance 
characteristics of the different design choices 
would yield quantitative results that may inform 
future design decisions. Specifically, we intend to 
run a series of experiments that compare the run 
time properties of different options. One possible 
experiment is to contrast the efficiency of a 
complex algorithm implemented in a BDI 



framework and the same algorithm implemented 
in a procedural language (such as Java). 
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